

Agilent PSA Series Spectrum Analyzers cdma2000 Measurement Personality

Product Overview

8.13

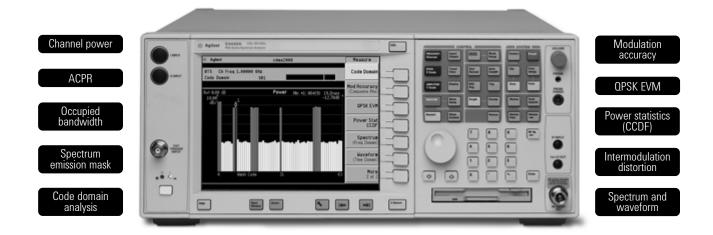
Ref 0.00 10.00

The PSA series, Agilent Technologies' highest performing spectrum analyzers, offer advanced and comprehensive RF and microwave measurement capability. The cdma2000 measurement personality (Option B78) adds a suite of standard-based measurements with digital modulation analysis to provide the most comprehensive and easy-to-use cdma2000 measurement solution in one analyzer.

ima

Agilent Technologies

Make the transition to third-generation (3G) wireless technology faster and easier Migrating from cdmaOne to cdma2000 will introduce new challenges in design and test of base stations and mobile transmitters. Be at ease in this transition with a comprehensive, one analyzer solution from Agilent.


- Expand design possibilities with powerful measurement capability and flexibility
- Expedite troubleshooting and design verification with numerous features and an intuitive user interface
- Streamline manufacturing with speed, reliability, and ease of use
- Improve yields with highly accurate measurements and operator independent results
- Simplify test systems with digital demodulation, RF power measurements, spur searches, and general high-performance spectrum analysis in one analyzer

The PSA series of high-performance spectrum analyzers provides exceptional levels of speed, accuracy, flexibility, and dynamic range. It also offers the most complete and easy-to-use, one-button RF power measurements with format-based setups for popular communications standards. Add the optional cdma2000 measurement personality for standards-based advanced power and digital demodulation measurements.

- sophisticated spectrum and modulation analysis
- examine multiple layers of a signal with comprehensive analysis from channel power to demodulated I/Q bits
- in-channel and out-of-channel measurements
- easy to use customizable limits and intuitive displays with pass/fail indicators and color graphics
- measurements derived from Agilent's E4406A vector signal analylzer (VSA) cdma2000 measurement personality incorporating three iterations of customer feedback

cdma2000 measurements

The cdma2000 personality provides key transmitter measurements for analyzing systems based on the 3GPP2 TSGC standards (March 2001). Measurements may be performed on the forward and reverse link signals.

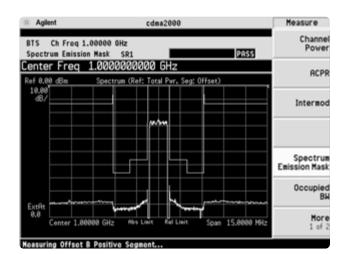
Channel power

The channel power measurement determines the total rms power in a user-specified bandwidth. The power spectral density (PSD) is also displayed in dBm/Hz.

Control the following channel power measurement parameters:

- integration bandwidth (defaults to 1.23 MHz)
- channel power span (defaults to 2 MHz)
- number of trace averages (defaults to 20)
- data points displayed (64 to 65536, defaults to 512)

🔆 Agilent		cdma:	2000			Ofs & Limits
BTS Ch Freq 1 ACPR-FFT	1.00000 GHz SR1		Averag	es: 10	PASS	Offset, A
Ref-10.71 dBm	Bar Gra	aph (Tat	tal Pwr Re	f)		Offset Freq 750.000 kHz On Off
18,89 dB/ MadP -9,8						Ref BH 38.000 kHz
ExtAt 0.0						Abs Linit 50.00 dBm
	-10.71 dB	m/ 1.	.23 MHz			Fail, Relative
ACPR-FFT		Lav	(er	Upp	er	
Offset Freq 758.08 kHz 1.98 PHz	38,88 kHz 38,88 kHz 38,88 kHz	dBc -72,69 -82,76	dBm -83,48 -93,47	dBc -72.15 -82.65	dBm -82,86 -93,32	Rel Lim (Car) 0.00 dBc
						Rel Lim (PSD) 8.88 dB


☆ Agilent		cdma	2000			Trace/View
BTS Ch Freq ACPR-FFT	1.00000 GHz SR1	L	Averag	ws: 10	PASS	Bar Grapi
Ref 0.00 dBm	Spect	rum (Tot	al Pwr Re	f)		Spectru
10.00 d8/						
MaceP -9.8		-www.	m			
			- 11			
ExtAt 8.8	mmmm		h	wm	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Center 1.6			00 MIL-	Span	5.00 MHz	
Total Pwr Ref: ACPR-FFT	-10.69 dB		23 MHz			
Offset Freq	Integ BW	Lo+ dBc		Upp dBc	dBm	
758.00 kHz 1.93 MHz	38.00 kHz 38.00 kHz		-83.34	-72.18		
1.98 1982	36.00 KH2	-92.83	- #3.53	-02.78	-73.47	

Adjacent channel power ratio (ACPR)

To maintain a quality call by avoiding channel interference, it is important to measure and reduce any adjacent channel leakage power transmitted from a base station. Reducing transmitter channel leakage allows for more channels to be transmitted simultaneously, which, in turn, increases base station efficiency. The characteristics of adjacent channel leakage power are mainly determined by the transmitter design. The adjacent channel power ratio is a measure of the power in adjacent channels relative to the transmitted power.

- adjust integration bandwidth (defaults to 1.23 MHz)
- evaluate up to five adjacent channel pairs
- choose adjacent channel offset frequency, reference bandwidth, and limit values
- adjust and display both absolute and relative limits
- troubleshoot with a FFT-based sweep
 - customizable resolution
 bandwidth and detector settings
 variable sweep acquisition time
 - for better repeatability
- measure the total power in dBm or the PSD in dBm/Hz
- view bar graph or spectrum

ACI	upled BW	dBm Occ	Ref-10.00 dE
Intern			10.00 dB/ MaxP -9.8 ExtRt 0.8
	Span 3.75888 MH Points 51	1.00000 GHz Bw 29.9997 kHz	

* Agilent		cdma2000			Off	set/Limits
BTS Ch Freq 1.0 Spectrum Emission				PRSS		Offset, A
Center Freq 1	.000000000	00 GHz				Start Freq 758,888 kHz
Ref 0.00 dBm	Spectrum (Ref:	Total Pwr. Seg:	Offset)		<u>0n</u>	Off
10.00		m				Stop Freq 1.98000 MHz
					Auto	Step Freq 15.000 kHz Man
ExtAt 0.0 Center 1.880	all GHz Real Li	nit Rel Linit	Span 15		Auto	Res BH 38.000 kHz <u>Man</u>
Total Pwr Ref: -10 Start(Wz) - Stoo(Nz) 758,8008 k 1,9008 M		Freq(Hz)	esk-> Up dBn -76.97	Per Freg(Hz) 1,8887 6		Meas BH (Integ BH) 1 x Res BH
1.9380 H 3.1250 H 3.1250 H 7.5080 H	38.88 k -91.6	59 996,9358 M	-98.21 -86.94	1.0031 G 1.0041 G		More 1 of 2
Measuring Offset A	Negative Segn	ent				

Occupied bandwidth

The standards recommended by the 3GPP2 for cdma2000 have occupied bandwidth (OBW) requirements for some of the band classes. Effectively, OBW determines the frequency bandwidth that contains 99 percent of the total radiated power.

- specify the resolution bandwidth (defaults to 30 kHz) and the span (defaults to 3.75 MHz)
- customize a simple PASS/FAIL limit test (defaults to 1.48 MHz)
- specify number of averages (defaults to 10)

Spectrum emission mask

The performance standards recommended by the 3GPP2 for cdma2000 have specific limits for transmitted spurious emissions. This measurement has different limits for different frequency offsets measured in different resolution bandwidths. Completing this measurement with a traditional spectrum analyzer can be tedious and time consuming. The PSA makes this measurement with one button press.

- view table and spectrum formats
- measure the total power in dBm or the PSD in dBm/Hz
- select the average or peak detector (defaults to average)
- adjust measurement interval (defaults to 1 ms)
- choose offset frequency, reference bandwidth, and limit values
- optimize speed and accuracy with variable measurement bandwidth
- customize reference channel span, step frequency, and resolution bandwidth

∦ Agilent	cdma2000	Marker
BTS Ch Freq 1.00000 Code Domain	GHz SR1	Shape Diamond
Marker 9.00000 Ref 8.88 Mkr •1: W64(9) 19	L2ksps Ref-15.88 Symb Power:H	Marker All Off
	2.71-88	Mkr-> Despread
8 Halsh Code		3.9 symb
I/Q Symb Polar Vector:	(64(9) Code Number: W64(9) 19. RMS EUM: 1.58 Z r	
	Pk EVM: 2.61 % p Magnitude Error: 1.17 % r Phase Error: 0.61 * r	* ms
	Total Power: -10.63 Channel Power: -23.34	

🔆 Agilent	cdma2000	Meas Setup
BTS Ch Freq 1.00000 Code Domain	9 GHz SR1	Heas Type Rbs Rei
Meas Interval 2 PC		High Code Length
	12.72dB 5.00 dB/	Halsh Code Number
8 Halsh Co		Halsh Code QOF
Remod Bils Meas Offic 11 1001100111 1000001 0: 0000010010 1111000	8.8 symb	Heas Interval 2 PCG
Canad Bits Mras Offic 1: 10101000001 1100100 0: 1010110101 0100001	1:1 10 0111 110 0010	Meas Offset 0 PC6
		More 1 of 3

Code domain analysis

The code domain analysis measurement provides a variety of different data display options. Code domain power analysis measures the distribution of signal power across the set of code channels, normalized to the total signal power. This measurement helps to verify that each code channel is operating at its proper level and to identify problems throughout the transmitter design from coding to the RF section. System imperfections, such as amplifier non-linearity, will present themselves as an undesired distribution of power in the code domain.

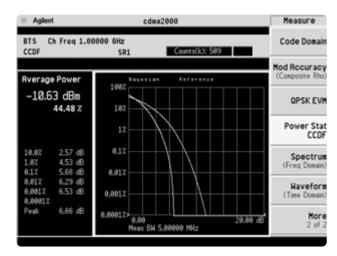
- specify Hadamard or bit-reverse code order demodulation algorithms
- use the active channel identification feature or manually set the code channel power threshold level
- customize capture interval (1 to 32 power control groups [PCG])
- move the analysis window by varying the measurement interval and offset
- select PN (pseudonoise sequence) offset
- measure quasi-orthogonal functions
- take advantage of multiple result views:
 - code power and symbol rates bar graph and table
 - I/Q symbol magnitude and phase errors and EVM plots
 - symbol power plot
- I and Q bits
- measure low-level signals more easily with optional preamplifier (Option 105)

🔆 Agilent	cdma2000	Limits
BTS Ch Freq 1.00000 Mod Accuracy	0Hz SR1 Rverages: 7 PASS	Composite 58.8 pcn
Rho: 8.93341	I/Q Heasured Polar Vector	Composite 188.8 pcm
EVH: 2.43 % rms 7.41 % pk Pk CDE:		(Composite) 0.5000
-58.85 dB at H128(39)		Peak Code Domain Error 8.8 dE
Hegnilude Errori 1.69 X res Phase Errori 1.71 * res		Timing 50.0 m
Freq Error: -3.31 Hz I/O Origin Offsett -54.07 dB		Phase 0.05rad
Active Channels! 4 Time Offset:		

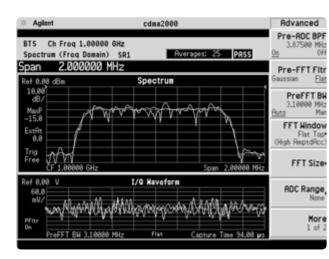
ir Agilent	cdma2000	Trace/View
BTS Ch Freq 1.00000 Mod Accuracy		I/Q Measured Polar Vector
Ref 0.00 Mag Error	Ref 8.88 Phase Erro	I/O Measured Polar Constin
1.50 pent/	3.00 dog/ gy3.10	I/O Error (Quad View)
effekter fickeling 1.000 keter 1	Si kchip 8.66 kchip 1	Power Timing & Phase
Ref 0.00 EVH	Pk CDE: -58,54 d8 at H Hagnilude Errori 1.65 Phase Errori 1.65	10 Hz

Modulation accuracy (composite rho)

An important measure of modulation accuracy for cdma2000 signals is rho. Rho is the ratio of the correlated power to the total power. It allows you to verify the overall modulation accuracy for a transmitter, regardless of the channel configuration, as long as a pilot channel is present.


- measure EVM, rho, and peak code domain error (CDE)
- customize limits for rms EVM, peak EVM, rho, peak CDE, timing error, and phase error
- specify chip and PN offsets
- view I/Q polar constellation and magnitude error, phase error, and EVM plots
- read power, timing, phase and EVM data for each active channel
- choose to include or exclude the I/Q origin offset in the EVM calculation
- Use the optional preamplifier to measure low–level signals

🔆 Agilent		cdma2000	Measure
BTS Ch F Opsk Evm	req 1.00000 0	Hz SR1 Everages: 7	Code Domain
RMS EVM:			Mod Accuracy (Composite Rho)
3.64 Z Pk EVM: Hax	Avg 3.46 X	I/Q Measured Polar Vector	OPSK EV
8.07 X Mag Error: Max	7.44 %		Power Stat CCDF
2.59 X Phase Error: Max 1.55 *	2.40 %		Spectrum (Freq Domain)
Freq Error: Max -7.66 Hz	Avg -3.17 Hz	The second	Haveform (Time Domain)
1/0 Origin Of	fset: -68.61 dB		More 2 of 2


OPSK EVM

The QPSK EVM measurement is used to get some indication of the modulation quality at the chip level for a single-channel signal. It can detect baseband filtering, modulation, and RF impairments, but does not detect spreading or scrambling errors.

- determine rms and peak EVM (maximum and average)
- view I/Q polar vector diagram or magnitude error, phase error, and EVM plots
- specify measurement interval (128 to 1536, defaults to 256 chips)

☆ Agilent		cdma2000			Measure
BTS Ch Freq Intermodulation	1.00250 GHz SR1	Âve	wrages: 10		Channel Power
Ref-20.00 dBm					ACPR
18.89 d8/ MaxP -7.2 -7.2		N/T	<u>]</u>		Intermod
8.8 Center 1.6	98258 GHz		Span	38.8888 MHz	
Base lower Base upper	Freq 999,988 MHz 1.88514 GHz	dBm -28.13 -27.47	dBc -8.65 8.88		Spectrum Emission Mask
3rd Order lower 3rd Order upper 5th Order lower	Freq 994.824 MHz 1.81829 GHz	dBm -69.36 -78.84 -82.89	dBc -41.89 -51.37	dBm/Hz	Occupied BH
Sth Order upper Meas Mode: Auto	1.81545 GHz	-86.86 RRC Filter:	-58.59 Off		More 1 of 2

Power statistics (CCDF)

The complementary cumulative distribution function (CCDF) is a plot of peak-to-average power ratio versus probability. It is often used to show compression and expansion of a signal by non-linear operation of amplifiers.

- customize measurement band width (defaults to 5 MHz)
- specify measurement interval
 set a reference trace or compare to Gaussian noise trace
- take advantage of the 0.1 dB histogram resolution

Intermodulation distortion

The harmonic distortion of a system is an indication of the linearity of its components. This measurement quantifies the third and fifth harmonic distortion components of two continuous wave (CW) signals or of a cdma2000 modulated signal and a CW signal.

- select number of averages (defaults to 10)
- measure two-tone or transmitted intermodulation (IM) distortion
- choose to specify base frequency or have it automatically detected
- apply RRC filtering if desired

Spectrum and waveform

View the frequency spectrum, I/Q waveform, or RF envelope (time domain) of a cdma2000 signal.

take advantage of advanced FFT windowing and filtering options
control the ADC range

Key specifications¹

	E4443A/E4445A/E4440A	E4446A/E4448A	
Frequency range	3 Hz to 6.7/13.2/26.5 GHz	3 Hz to 44/50 GHz	
Speed			
Sweep time, span ≥ 10 Hz	1 ms to 2000 s	1 ms to 2000 s	
Sweep time span = 0 Hz	1 µs to 6000 s	1 µs to 6000 s	
Local measurement update rate	\geq 50 measurements/sec	\geq 50 measurements/sec	
Remote measurement update rate	\geq 22 measurements/sec	\geq 22 measurements/sec	
Resolution			
Resolution bandwidth range,			
swept and FFT	1 Hz to 3 MHz (10%	1 Hz to 3 MHz (10%	
	steps), 4, 5, 8 MHz	steps), 4, 5, 8 MHz	
Variable sweep (trace) point range	101 to 8192	101 to 8192	
Phase noise at 1 GHz			
10 kHz offset	–114 dBc/Hz	–114 dBc/Hz	
TO KILL OHOOL	–117 dBc/Hz (typical)	–117 dBc/Hz (typical)	
1 MHz offset	–144 dBc/Hz	-144 dBc/Hz	
	–144 dBC/Hz (nominal)		
10 Mile offect	l j	–148 dBc/Hz (nominal)	
10 MHz offset	-151 dBc/Hz	-151 dBc/Hz	
	–157 dBc/Hz (nominal)	–157 dBc/Hz (nominal)	
Residual FM	< (1 Hz x N2) p-p in 1 s	< (1 Hz x N2) p-p in 1 s	
Dynamic range			
Displayed average noise level (DANL)			
10 MHz to 3 GHz	–152 dBm	–151 dBm	
3 GHz to 20 GHz	–146 dBm	–144 dBm	
20 GHz to 26.5 GHz	–143 dBm	–140 dBm	
26.5 GHz to 44 GHz	N.A.	–131 dBm	
44 GHz to 50 GHz	N.A.	–126 dBm	
Preamplifier (DANL) - 10 MHz to 3 GHz	–166 dBm	–164 dBm	
1 dB gain compression			
200 MHz to 3 GHz	+3 dBm (+7 dBm nominal)	+3 dBm (+7 dBm nominal)	
Input attenuator range	0 to 70 dB in 2 dB steps	0 to 70 dB in 2 dB steps	
TOI - 1.7 GHz to 3.0 GHz	+17 dBm (+19 dBm typical)	+18 dBm (+21 dBm typical)	
SHI - 400 MHz to 1.25 GHz	+52 dBm	+51 dBm	
ACPR, W-CDMA (5 MHz offset)			
Dynamic range	–74.5 dB (typical)	–74.5 dB (typical)	
Dynamic range w/noise correction	–81 dB (typical)	–81 dB (typical)	
Accuracy			
Absolute amplitude accuracy	±(0.24 dB + frequency response)	\pm (0.24 dB + frequency response)	
• • • • • •	\pm (0.06 dB + frequency response),	\pm (0.06 dB + frequency response),	
	(typical)	(typical)	
95% confidence, 3 Hz to 3 GHz	±0.24 dB	±0.24 dB	
Frequency response, 3 Hz to 3 GHz	± 0.38 dB (± 0.10 dB typical)	±0.24 dB ±0.38 dB (±0.10 dB typical)	
Frequency accuracy at 1 GHz	±100 Hz	±100 Hz	
and a stable temperature	±100112		
	$\pm 0.2\%$ \pm open	$\pm 0.20\% \pm 0.000$	
Span accuracy	±0.2% + span sweep points - 1	±0.2% + span sweep points - 1	
W-CDMA ACPR accuracy (5 MHz offset)	sweeh hours - i	Sweep points - 1	
Mobile station	±0.12 dB	±0.12 dB	
Base station	$\pm 0.12 \text{ dB}$ $\pm 0.22 \text{ dB}$	±0.12 dB ±0.22 dB	
Warranty	3 years (standard)	3 years (standard)	

See PSA series spectrum analyzers data sheet for more specification details (literature number 5980-1284E).
 N is harmonic mixing mode.

cdma2000 measurement personality (10 MHz to 3 GHz)

The following specifications are nominal for models E4446A and E4448A.

Channel power

Minimum power at RF input	-74 dBm (nominal)
Absolute power accuracy:	
Attenuation > 2 dB	±0.67 dB (±0.18 dB typical)
Attenuation $\leq 2 \text{ dB}$	±0.76 dB (±0.24 dB typical)
Relative power accuracy:	
Mixer level -52 to -12 dB	±0.08 dB (±0.03 dB typical)
ACPR	
Minimum power at RF input	-38 dBm (nominal)
Dynamic range (reference to average	
power of carrier in 1.25 MHz bandwidth)	
Offset frequency / integrated bandwidth	
750 kHz / 30 kHz	84.9 dBc
885 kHz / 30 kHz 1256.25 kHz / 12.5 kHz	-85.2 dBc -89.6 dBc
1980 kHz / 30 kHz	
2750 kHz / 1000 kHz	-71.7 dBc
ACPR relative accuracy	±0.09 dB
CCDF	
Minimum carrier power at RF input Histogram resolution	–30 dBm (nominal) 0.01 dB
Thistogram resolution	0.01 db
Intermodulation distortation	
Minimum carrier power at RF input	30 dBm
Third order intercept	
CF = 1 GHz	+7.2 dB
CF = 2 GHz	+7.5 dB
Occupied bandwidth	
Minimum carrier power at RF input	-40 dBm
Frequency accuracy	$\geq 0.3\%$ (nominal)
Snootmum amianian maak	
Spectrum emission mask Minimum carrier power at RF input	
Dynamic range, relative:	-20 ubiii
750 kHz offset (30 kHz RBW)	-84.7 dB (-86.4 dB typical)
1980 MHz region (1200 kHz RBW)	-80.7 dB (-83.0 dB typical)
Sensitivity, absolute:	
750 kHz offset (30 kHz RBW)	–97.9 dBm (-99.9 dBm typical)
1980 MHz region (1200 kHz RBW)	81.9 dBm (-83.9 dBm typical)
Accuracy, relative:	0.44.10
750 kHz offset	0.14 dB
1980 MHz region	0.56 dB
Code domain	
Code domain power:	
Minimum power at RF input	-60 dBm (nominal)
Relative accuracy	±0.15 dB
Symbol power versus time:	
Minimum power at RF input Accuracy	–40 dBm (nominal) ±0.1 dB
Accuracy	±0.1 db
QPSK EVM	
Minimum power at RF input	-20 dBm (nominal)
EVM accuracy	±1.0% (nominal)
Frequency error accuracy	±10 Hz (nominal) + (transmitter frequency x frequency reference error)
Modulation accuracy (composite EVM)
Minimum carrier power at RF input	
iviiniinum camer power at mi mput	-60 dBm (nominal)

Minimum carrier power at RF input Accuracy Global EVM Rho Frequency error

 $\pm 0.75\%$ ± 0.0015 ± 10 Hz + (transmitter frequency x frequency reference error)

Ordering information

PSA series spectrum analyzer

E4443A	3 Hz to 6.7 GHz
E4445A	3 Hz to 13.2 GHz
E4440A	3 Hz to 26.5 GHz
E4446A	3 Hz to 44 GHz
E4448A	3 Hz to 50 GHz

Options

To add options to a product, use the following ordering scheme: Model E444xA (x = 0, 3, 5, 6 or 8) Example options E4440A-B7J E4448A-1DS

Digital demodulation hardware

E444xA-B7J	Digital demodulation
	hardware (required for digital
	demodulation measurement
	personalities)

Digital demodulation measurements

E444xA-BAF	W-CDMA measurement
	personality
E444xA-202	GSM w/ EDGE measurement
	personality
E444xA-B78	cdma2000 measurement
	personality
E444xA-204	1xEV-D0 measurement
	personality
E444xA-BAC	cdmaOne measurement
	personality
E444xA-BAE	NADC, PCD measurement
	personality

Phase noise measurement

E444xA-226 Phase noise measurement personality

Amplifiers

E444xA-1DS	100 kHz to 3 GHz built-in
	preamplifier

Inputs and outputs

E4440A-BAB	Replaces type "N" input connector with APC 3.5
	connector

Connectivity software

E444xA-230 BenchLink Web Remote Control Software

Code compatibility

E444xA-266	HP 8566B/8568B code
	compatibility measurement
	personality
Accessories	

E444xA-1CM	Rack mount kit
E444xA-1CN	Front handle kit
E444xA-1CP	Rack mount with handles
E444xA-1CR	Rack slide kit
E444xA-045	Millimeter wave accessory kit

Documentation

E444xA-0B1 Extra manual set including CD ROM

Calibration documentation

E444xA-UK6	Commercial calibration
	certificate with test data

Warranty and service

For warranty and service of 5 years, please order 60 months of R-51B (quantity = 60). Standard warranty is 36 months.

R-51B	Return-to-Agilent warranty and
	service plan

Calibration¹

For 3 years, order 36 months of the appropriate calibration plan shown below. For 5 years, specify 60 months.

R-50C-001	Standard calibration
R-50C-002	Standards compliant calibration

E444xA-0BW Service manual and calibration software

^{1.}Options not available in all countries.

Product literature

PSA Series - The Next Generation, brochure, literature number 5980-1283E

PSA Series, data sheet, literature number 5980-1284E

Phase Noise Measurement Personality, product overview, literature number 5988-3698EN

W-CDMA Measurement Personality, product overview, literature number 5988-2388EN

GSM with EDGE Measurement Personality, product overview, literature number 5988-2389EN

cdma2000 Measurement Personality, product overview, literature number 5988-3694EN

1xEV-DO Measurement Personality, product overview, literature number 5988-4828EN

cdmaOne Measurement Personality, product overview, literature number 5988-3695EN

NADC/PDC Measurement Personality, product overview, literature number 5988-3697EN

PSA Series Spectrum Analyzers, Option H70, 70 MHz IF Output, product overview, literature number 5988-5261EN

Self-Guided Demonstration for Spectrum Analysis, product note, literature number 5988-0735EN

Self-Guided Demonstration for Phase Noise Measurements, product note, literature number 5988-3704EN

Self-Guided Demonstration for W-CDMA Measurements, product note, literature number 5988-3699EN

Self-Guided Demonstration for GSM and EDGE Measurements, product note, literature number 5988-3700EN Self-Guided Demonstration for cdma2000 Measurements, product note, literature number 5988-3701EN

Self-Guided Demonstration for 1xEV-DO Measurements, product note, literature number 988–6208EN

Self-Guided Demonstration for cdmaOne Measurements, product note, literature number 5988-3702EN

Self-Guided Demonstration for NADC and PDC Measurements, product note, literature number 5988-3703EN

PSA Series Demonstration CD, literature number 5988-2390EN

Optimizing Dynamic Range for Distortion Measurements, product note, literature number 5980-3079EN

PSA Series Amplitude Accuracy, product note, literature number 5980-3080EN

PSA Series Swept and FFT Analysis, product note, literature number 5980-3081EN

PSA Series Measurement Innovations and Benefits, product note, literature number 5980-3082EN

PSA Series Spectrum Analyzer Performance Guide Using 89601A Vector Signal Analysis Software, product note, literature number 5988-5015EN

Selecting the Right Signal Analyzer for Your Needs, selection guide, literature number 5968-3413E

8 Hints for Millimeter Wave Spectrum Measurements, application note, literature number 5988–5680EN

PSA Series Spectrum Analyzer Performance Guide Using 89601A Vector Signal Analysis Software, product note, literature number 5988-5015EN 89600 series + PSA, 802.11A and HiperLAN2 ODFM Measurements, product note, literature number 5988-4094EN

N4256A Amplifier Distortion Test Set, product overview, literature number 5988-2925EN

BenchLink Web Remote Control Softeware, product overview, literature number 5988-2610EN

HP 8566B/68B Programming Code Compatibility for PSA and ESA-E Series Spectrum Analyzers, product overview,

literature number 5988-5808EN

IntuiLink Software, Data Sheet, Literature Number 5980-3115EN

Agilent Technologies Wireless/GSM Solutions, application note, literature number 5968-2320E

Measuring EDGE Signals - New and Modified Techniques and Measurement Requirements, application note, literature number 5980-2508EN

Selecting the Right Signal Analyzer for Your Needs, selection guide, literature number 5968-3413E

8 Hints for Better Millimeter Wave Spectrum Measurements, application note, literature number 5988–5680EN

- Designing and Testing cdma2000 Base Stations, application note, literature number 5980-1303E
- Designing and Testing cdma2000 Mobile Stations, application note, literature number 5980–1237E
- HPSK Spreading for 3G, application note, literature number 5968–8438E

For more information on the PSA series, please visit:

www.agilent.com/find/psa

Agilent Technologies Test and Measurement Support, Services, and Assistance

Agilent Technologies aims to maximize the value you receive, while minimizing your risk and problems. We strive to ensure that you get the test and measurement capabilities you paid for and obtain the support you need. Our extensive support resources and services can help you choose the right Agilent products for your applications and apply them successfully. Every instrument and system we sell has a global warranty. Support is available for at least five years beyond the production life of the product. Two concepts underlie Agilent's overall support policy: "Our Promise" and "Your Advantage."

Our Promise

Our Promise means your Agilent test and measurement equipment will meet its advertised performance and functionality. When you are choosing new equipment, we will help you with product information, including realistic performance specifications and practical recommendations from experienced test engineers. When you use Agilent equipment, we can verify that it works properly, help with product operation, and provide basic measurement assistance for the use of specified capabilities, at no extra cost upon request. Many self-help tools are available.

Your Advantage

Your Advantage means that Agilent offers a wide range of additional expert test and measurement services, which you can purchase according to your unique technical and business needs. Solve problems efficiently and gain a competitive edge by contracting with us for calibration, extra-cost upgrades, out-of-warranty repairs, and on-site education and training, as well as design, system integration, project management, and other professional engineering services. Experienced Agilent engineers and technicians worldwide can help you maximize your productivity, optimize the return on investment of your Agilent instruments and systems, and obtain dependable measurement accuracy for the life of those products.

By internet, phone, or fax, get assistance with all your test and measurement needs

Online assistance: www.agilent.com/find/assist

Phone or Fax United States: (tel) 800 452 4844

Canada: (tel) 877 894 4414 (fax) 905 282 6495

China: (tel) 800 810 0189 (fax) 800 820 2816

Europe: (tel) (31 20) 547 2323 (fax) (31 20) 547 2390

Japan: (tel) (81) 426 56 7832 (fax) (81) 426 56 7840

Korea: (tel) (82 2) 2004 5004 (fax) (82 2) 2004 5115

Latin America: (tel) (305) 269 7500 (fax) (305) 269 7599

Taiwan: (tel) 0800 047 866

(fax) 0800 286 331 Other Asia Pacific Countries:

(tel) (65) 6375 8100 (fax) (65) 6836 0252 Email: tm_asia@agilent.com

Product specifications and descriptions in this document subject to change without notice.

© Agilent Technologies, Inc. 2002 Printed in USA, June 4, 2002 5988-3694EN

www.agilent.com/find/emailupdates Get the latest information on the products and applications you select.

